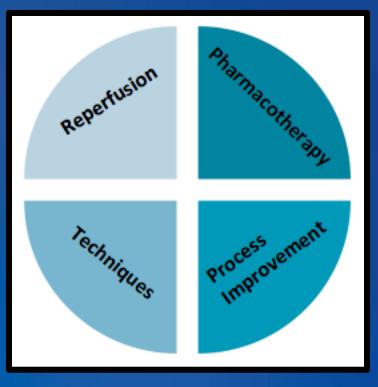
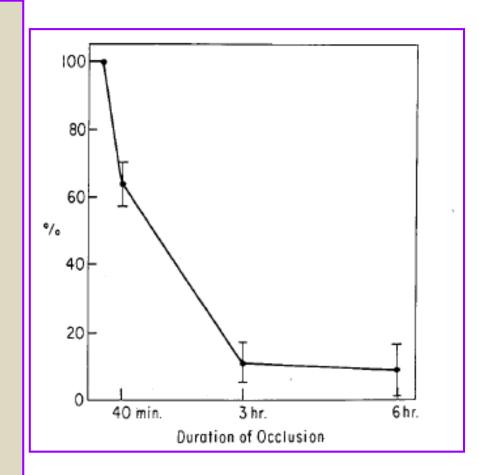

Advances in the Management of STEMI

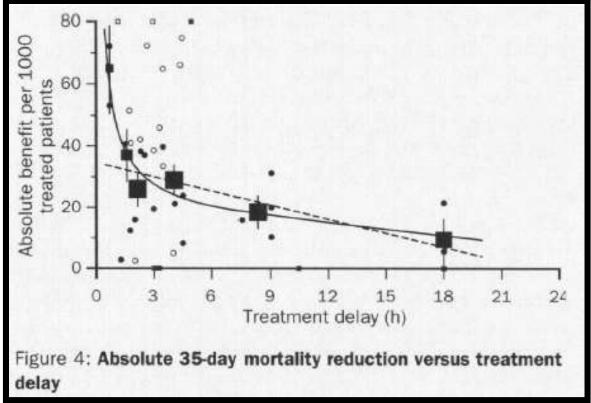
Timothy A Mixon MD FACC FSCAI Interventional Cardiology Baylor Scott & White, Temple, TX Associate Professor of Medicine, Texas A&M COM



STEMI Care

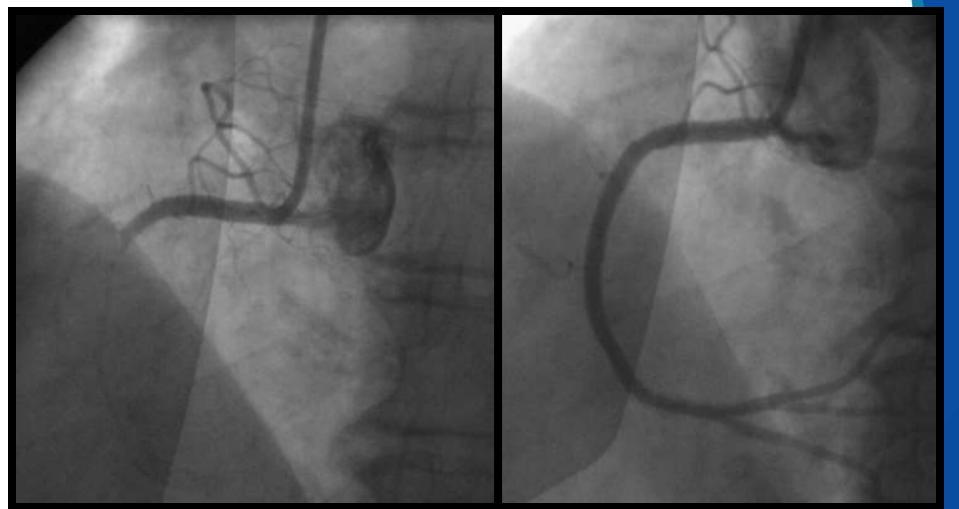

REPERFUSION

Time is muscle...


- Circumflex occlusion of variable length (40 min, 3 hrs, 6 hrs, or permanent) in open-chest dogs
- Subsequent histologic examination to determine extend and distribution of infarct
- Infarct location began in endocardium, spread in a wave-front toward epicardium
- Infarction involved
 - (% of ischemic bed at rest):
 - 28% at 40 min
 - 70% at 3 hr
 - 72% at 6 hr
 - 79% with permanent occlusion

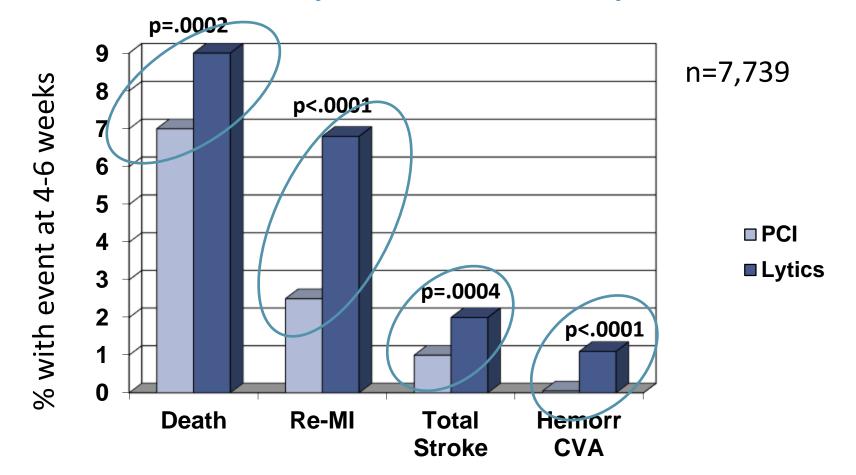
Reimer and Jennings, Lab Invest, 1979.

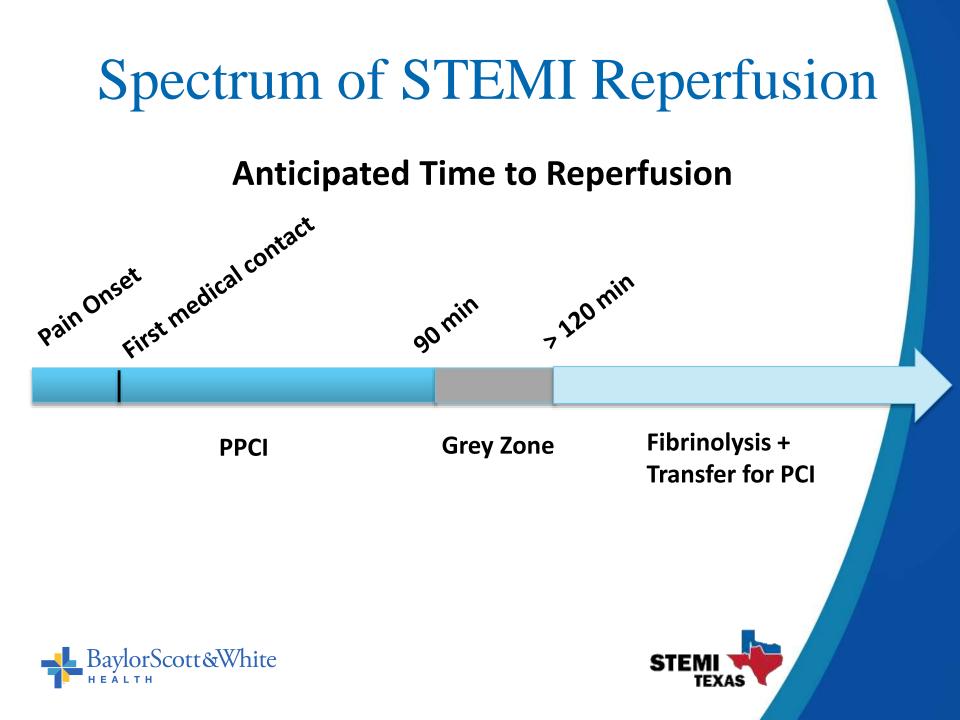
Background: Fibrinolytic *Early Reperfusion Therapy*



- Strong, nonlinear relationship between *time to therapy* and *mortality*
- Benefit most pronounced early; modest benefit at 6-12 hrs

Boersma & Maas. Lancet 1996


Primary PCI



Meta-analysis of 23 Randomized Trials of Fibrinolytics vs. Primary PCI

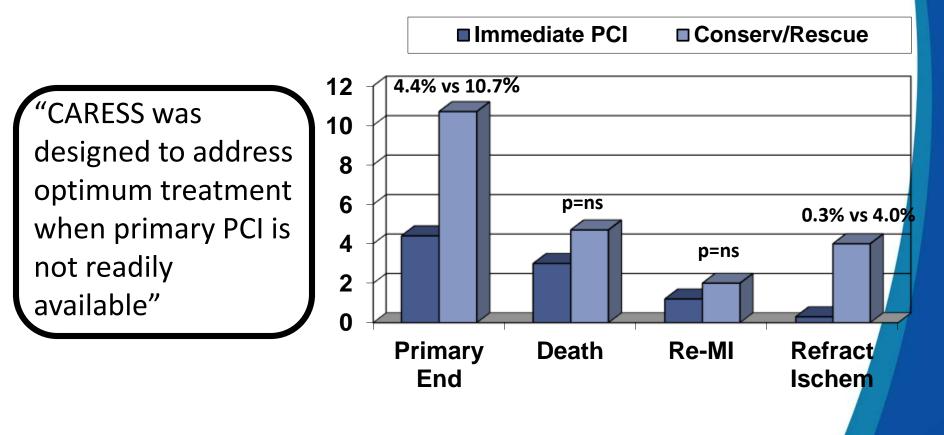
STREAM Trial

Compared PPCI vs. fibrinolytic therapy (with rescue PCI as needed) in patients at least 1 hour away from a PPCI center

<u>Relevant Time Periods (r</u> Both Groups	<u>ninutes</u>)		End Point (%)	100- 90- 80-		20- 15-			Priman	PCI
Symptom-to-FMC	62			70- 60-		10- 5-	janan di		Fibrino	lysis
FMC-to-random	30		Probability of Primary	50- 40- 30-		0	5	10 15	20 2	5 30
Lytic			Probabi	20- 10- 0-	<u></u>	10	15	20	25	<u></u> 30
FMC-to-drug <i>PPCI</i>	40		No. at Risk Fibrinolysis Primary PCI	943 948	848 836	Days sir 837 824	829 818	827 815	825 811	823 811
FMC-to-balloon <i>∆ Time</i>	117 77	No	ual rate differe on-signif	nce	in to	tal m	orta	lity		shock
			tics (nun							

TEXAS

STREAM Trial

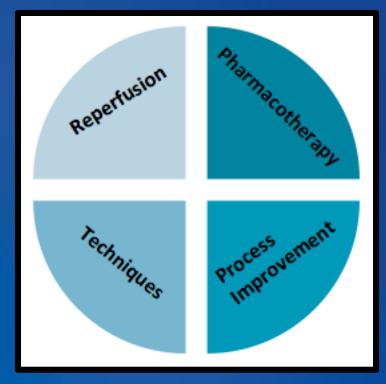

Positive or negative trial?

CARESS-in-AMI: Results

Conclusion: "...a strategy of immediate transfer for PCI after a combination of half-dose fibrinolytic plus abciximab is better than continuing standard management at the same centre"

Summary: Transfer-AMI and Caress-in-AMI

- 1. Routine strategy of urgent transfer appears warranted
- 2. Among "routine therapy", urgent cath required in $\sim 33\%$
- 3. Results show:
 - Fewer acute ischemic events
 - Trend toward lower re-infarction
 - No difference in mortality
 - Nonsignificant trend toward increased bleeding


Conclusions: Reperfusion Therapy

1. Occlusion leads to permanent myocardial damage

- Beginning at 20 minutes
- Significant damage by 90-120 minutes
- 2. Early fibrinolytic therapy promotes coronary reperfusion and reduces mortality from STEMI
- 3. PPCI, if performed in a timely manner, is superior to fibrinolytic therapy
- 4. Time to treatment > 120 min: consider lytics
- 5. Fibrinolytic therapy should be used if emergent, *timely PCI not possible*

> Early transfer to a PCI-capable hospital for:

Rescue PCI or early systematic PCI

PHARMACOTHERAPY

Novel P2Y12 Receptor Antagonist

<u>Clopidogrel</u>

Moderate platelet inhibition Slow onset of action Complex bioactivation Genetic variants impact efficacy Drug-drug interactions

Prasugrel & Ticagrelor

High level platelet inhibition Rapid onset of action Simpler/rapid bioactivation No known genetic impact No known drug-drug interactions

Novel P2Y12 Receptor Antagonist

Results:	RRR	ARR		
- Composite endpoint:	16-19%	2%		
– Reduction in MI:	16-24%	2%		
 Difference in stroke: 	no difference			
- Stent thrombosis:	25-52%	1%		
Mortality:	<u>RRR</u>	<u>p value</u>		
– Ticagrelor:	21%	p=.001		
– Prasugrel:	11%	p=.31		
BaylorScott&White Triton TIMI 38 N Eng J Med 2007; 35	57:2001f			

PLATO N Eng J Med 2009; 361: 1045f

ACCOAST & ATLANTIC Trials

What is the utility of pre-loading novel P2Y12 blockers?

ACCOAST: prasugrel in ACS bound for CL ATLANTIC: ticagrelor in STEMI

ACCOAST / ACS

- No benefit in overall cohort (n=4,033)
- Increased bleeding ($\approx 3x$) with pre-treatment
- ACCOAST PCI: similar results for both ischemic and bleeding *ATLANTIC / STEMI*
- Failed to meet primary endpoint (pre-reperfusion endpoints)
- Lowered acute stent thrombosis by $\approx 1\%$

Montalescot N Eng J Med 2013; 369:999-1010 Montalescot J Am Coll Cardiol 2014; 64: 2563-71 Montalescot N Eng J Med 2014; 371: 1016-1027

UFH vs. Bivalirudin

Reduced ischemic complications

UFH + IIb/IIIa superior to UFH alone

> 1990s EPIC, EPILOG, EPISTENT

More potent P2Y12 antagonist?
✓ bleeding due to radial?
Inadequate bivalirudin dosing?
Single center, underpowered?

Bivalirudin superior to UFH + IIb/IIIa

> 2008 Horizons AMI 2013 EuroMax

Equal ischemic complications + lower bleeding = mortality benefit

? UFH alone superior to Bivalirudin ?

2014 HEAT PPCI

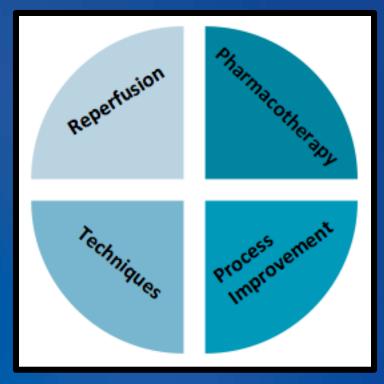
Reduced ischemic complications Equal bleeding

Bivalirudin vs. UFH

- Both remain Class I
- Both are measurable/verifiable
- Current dosing (? + radial approach) reduces bleeding
- Provisional IIb/IIIa antagonist ($\approx 10-15\%$)
- Early (? in lab) prasugrel or ticagrelor
- Corroborative, multicenter, blinded trial data needed

The S&W STEMI Cocktail

Pre-Cath Lab


Aspirin 162-325 mg, chew and swallow ASAP
 UFH 60 U/kg IV (max 4,000 U): no drip

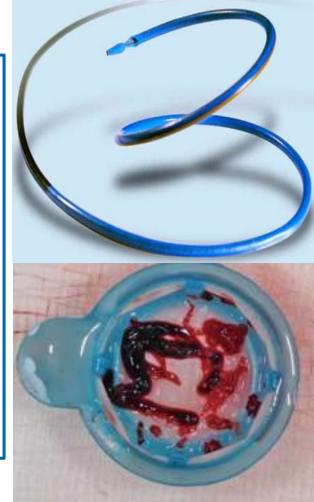
In Cath Lab

- 3. Bivalirudin (+/- post PCI dosing)
- 4. Oral anti-platelet agent High bleeding risk: clopidogrel 600 mg po Normal bleeding risk: prasugrel or ticagrelor
- 5. Bailout IIb/IIIa antagonist prn

Procedural Technique and Adjunctive Therapy

Adjunctive Cardioprotective Therapies

- Metabolic manipulation
 - Trimetazidine, magnesium, GIK, exenatide
- Inflammation
 - Pexelizumab, others
- Kinases signaling pathways
 - Delcasertib, carperitide, epoetin
- Pre- post- remote- conditioning,
- Aqueous hyperoxygenation
- Hypothermia
- Distal EPD
- Adenosine


Investigations still underway: Remote ischemic conditioning Hypothermia Aqueous hyper-oxygenemia

Aspiration Thrombectomy

Promise & Benefit

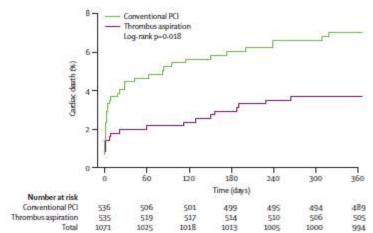
- 1. Clears the vessel
- 2. Clarifies underlying disease
- 3. Small studies suggest:
 - Improved ST resolution,
 - Improved microvascular obstruction
 - Lower re-MI / re-hospitalization

Getting our hopes up...

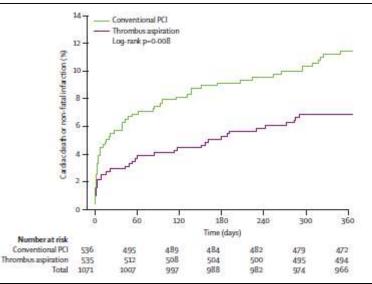
TAPAS Trial

Cardiac death @ 1 yr

3.6% vs. 6.7% (HR 1.93)

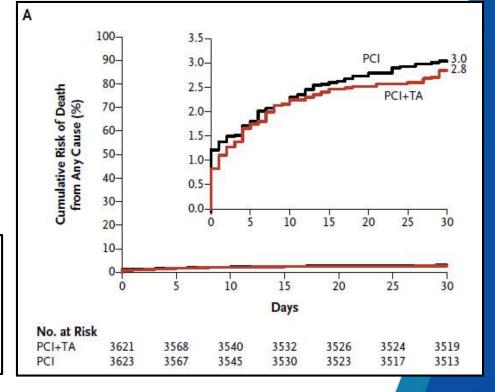

Death or MI @ 1 yr

5.6% vs. 9.9% (HR 1.81)


Table 7. Recommendation for Thrombus for STEMI	Aspiration During PCI
2009 Joint STEMI/PCI Focused Update Recommendation	Comments
Class IIa	
1. Aspiration thrombectomy is reasonable for patients undergoing primary PCI (17,18,102). (Level of Evidence: B)	New recommendation

2009 Focused Update PCI/STEMI & 2013 STEMI Guidelines

Top: CV mortality Below: CV mortality and MI



- No difference in all cause mortality
- Nonsignificant trends toward reduction in stent thrombosis & rehospitalization due to MI

No STEMI/PCI Guidelines since publication Likely to be downgraded to Class IIb

Large, confirmatory TOTAL Trial enrolling, n=10,700, powered for mortality

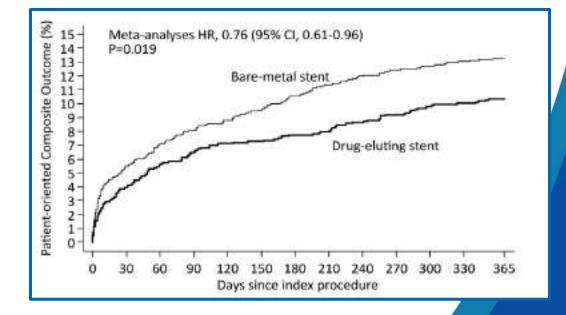
STE

TEXAS

Frobert et al. N Engl J Med 2013

Summary of Aspiration Thrombectomy

- Currently Class IIa recommendation
- Largest trial to date: No mortality benefit
- Reasonable to utilize when heavy thrombus burden present, to facilitate successful procedure
- Current trials: Routine use vs. no use, rather than.
 Selective use or
 - Only in setting of large thrombus


Stent Selection

Meta-analysis of EXAMINATION & COMFORTABLE

- 8% reduction in death (ns)
- -42% reduction in any reinfarction (p=0.05)
 - 33% reduction in any revascularization (p=.005)
 - 68% reduction in TLR (p<.001)
 - 50-65% reduction in stent thrombosis (depending on definition used)

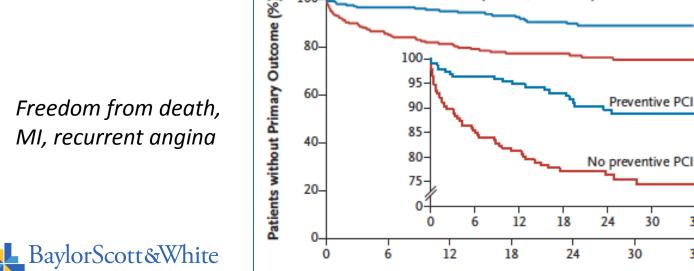
34% relative reduction in *patient oriented composite outcomes

Multivessel PCI during STEMI ?

Background: PCI of a nonculprit lesion considered Class III

PCI in 2015:

- − û consistency,
- Better pharmaceuticals
 - Less thrombosis, embolization, vessel closure



PRAMI and CvLPRIT

Treatment of non-culprit lesions resulted in:

- Lower recurrent MI
- Lower recurrent angina
- Lower repeat revascularization

100

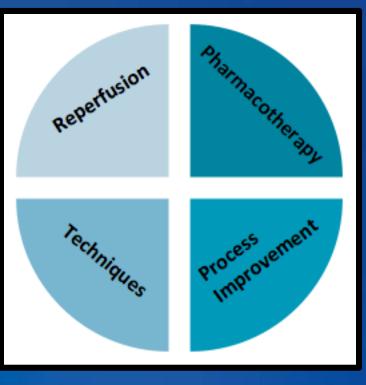
Months since Randomization

Hazard ratio, 0.35 (95% CI, 0.21-0.58); P<0.001

36

PRAMI and CvLPRIT

<u>Critiques</u>


- Small, underpowered trials
- Examined same setting MV PCI vs culprit only PCI
 - Not *early staged* MV PCI

✓ Unlikely to ∆ class III recommendation (? IIb)
 ✓ Await large COMPLETE trial (2018), n=4,000 comparing early staged PCI vs. medical therapy

Process Improvement

Translational Science / Systems Applications

"Humanity's greatest advances are not in its discoveries – but in *how those discoveries are applied*..."

Bill Gates Commencement speech Harvard University, 2007

"Major advances in health care occur not from results of randomized clinical trials or real-world registries, but from the *application of those results to complex healthcare systems*, which requires the successful interaction of healthcare workers and their patients.

> Tim Henry MD *Circulation* 2012; 126(2): 189-195

What is a STEMI system of care?

Definition: An "integrated group of entities within a region coordinating...services"

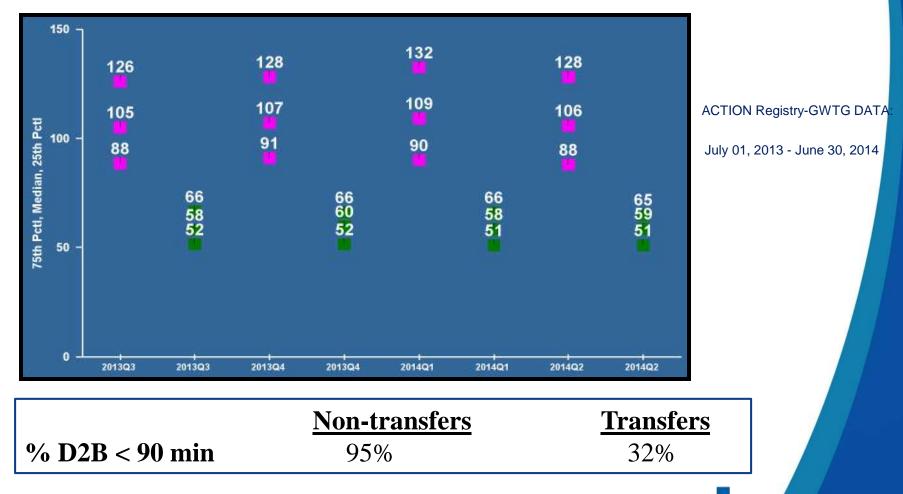
System includes:

- 1. EMS providers (PH personnel)
- 2. Referral/non PCI hospitals
- 3. PPCI hospitals

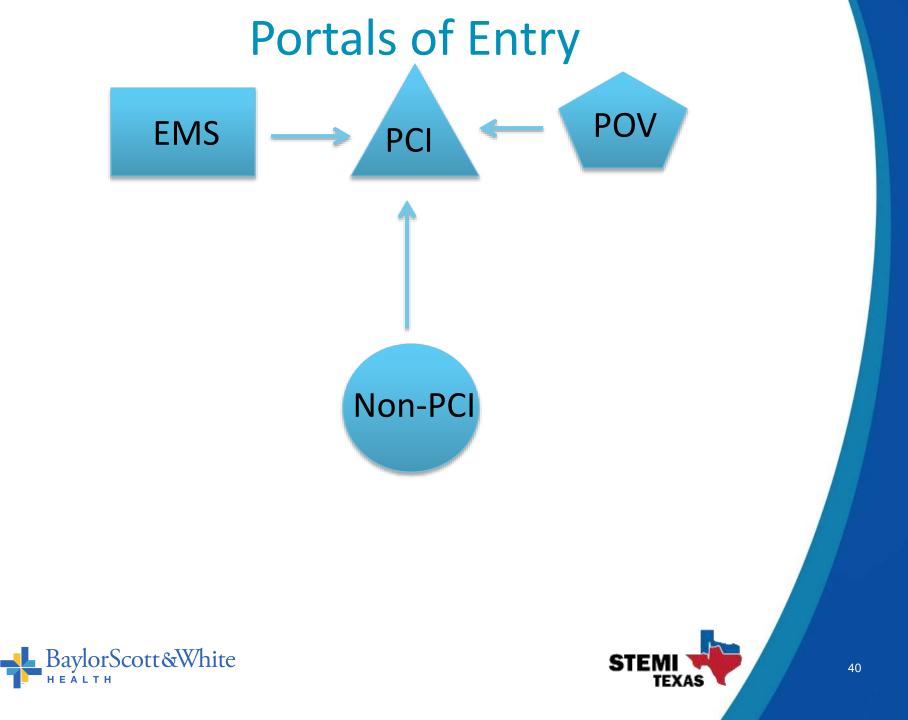
Jacobs et al. Circulation 2007; 116: 217-30.

What is a STEMI system of care?

Goal: Optimizes *patient outcomes* via *collaboration*


Strategies:

- Assist each entity in *applying* scientific discoveries
- Promoting efficient and effective *collaboration*
 - Especially *communication* and *inter-hospital transfer*
- Data collection and sharing
- Ongoing feedback and quality improvement


STEMI Systems—Ideal Practices STEMI Receiving Centers

STEM

TEXAS

STEMI Systems—Ideal Practices ED Principles of Rapid, Safe, and Effective STEMI Care—**Non PCI Hospital** Door-In-Door-Out (DIDO)Time

- D2b times in US have improved...dramatically
- 40-60% of patients presenting to non-PCI...not benefitting
- Main factor of FMC2b < 90 for transfer patient...DIDO

Glickman et al. Circ Cardiovasc Qual 2011; 4: 382-8.

STEMI Systems—Ideal Practices ED Principles of Rapid, Safe, and Effective STEMI Care—Non PCI Hospital

What we know:

1.DIDO Times

- ✓ 10% of transfer have DIDO < 30 min
- ✓ 31% had DIDO > 90 min
- ✓ Median DIDO time ≈ 60 min

2.DIDO time < 30 min \rightarrow \uparrow chance of FMC2b < 90

- 60% vs. 13% achieved d2b goal
- 85 min vs. 127 min

3.Outcome: In-hospital mortality, stratified by DIDO time

2.7% vs. 5.9%

STEMI Systems—Ideal Practices ED Principles of Rapid, Safe, and Effectiv STEMI Care—Non PCI Hospital

EMS

ED

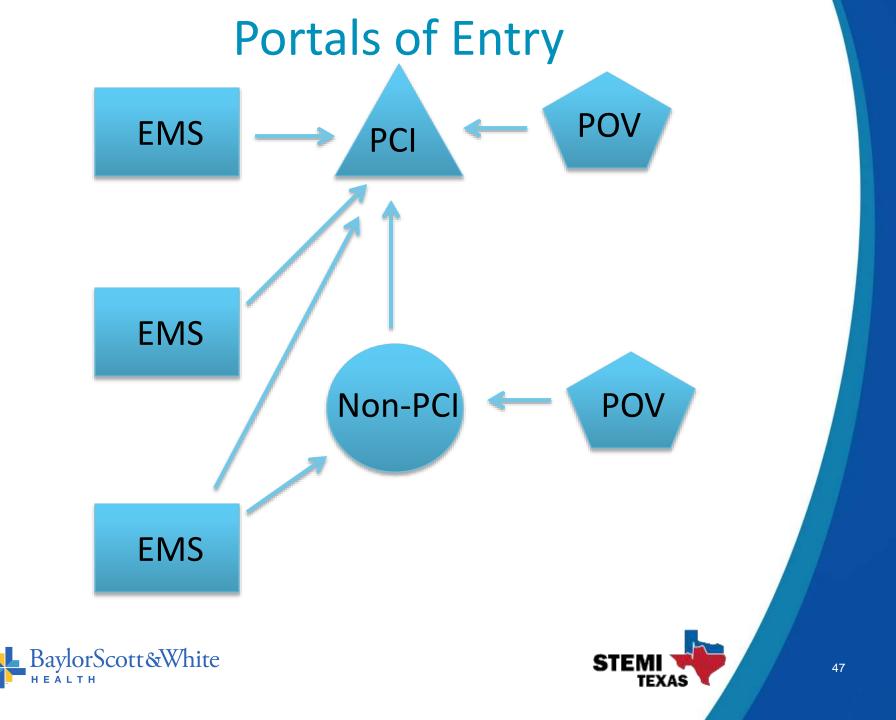
STEN

PCI Center

Factors Associated with Reduced DIDO

- 1. Equipment for 12 lead ECG
- 2. EMS program to read ECG
- 3. Local ambulance < 50 miles
- 4. Keep patient on stretcher
- 5. ECGs within 10 min
- 6. Single call to activate CL
- 7. STEMI team/leadership
- 8. Specified reperfusion plan

BaylorScott&White

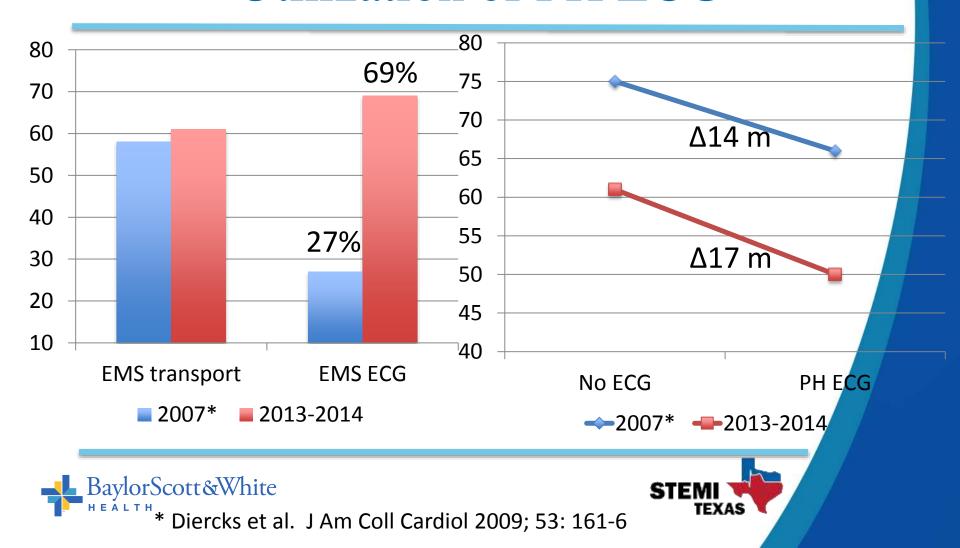

Glickman et al. Circ Cardiovasc Qual 2011; 4: 382-8.

STEMI Systems—Ideal Practices ED Principles of Rapid, Safe, and Effective STEMI Care—Non PCI Hospital

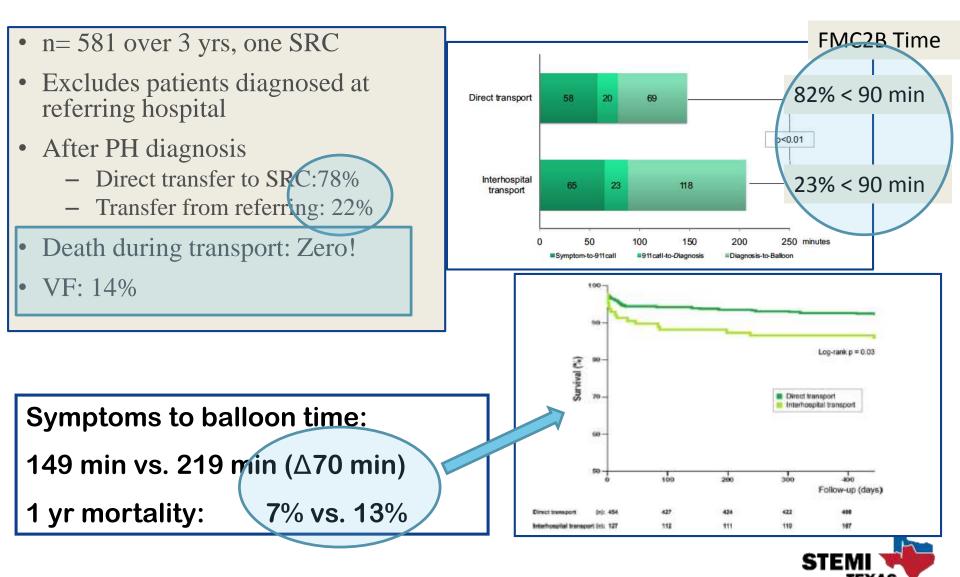
Door-in-door-out: time, process

- 1. Pre-established plans of transfers
 - Relationship with STEMI center(s)
 - Transport options with contingency plan
 - Division of labor
 - Mock drills
- 2. Medical protocols
 - Standardized
 - Simple
- 3. ED empowerment to activate CL
 - Processes in parallel

Health Services and Outcomes Research


Driving Times and Distances to Hospitals With Percutaneous Coronary Intervention in the United States Implications for Prehospital Triage of Patients With ST-Elevation Myocardial Infarction

Brahmajee K. Nallamothu, MD, MPH; Eric R. Bates, MD; Yongfei Wang, MS; Elizabeth H. Bradley, PhD; Harlan M. Krumholz, MD, SM


- 25% of US hospitals have 24/7 PCI capability
- 42% present to PCI center
- Remaining 58%...
 - 75% could bypass & transfer to PCI hospitals < 30 minutes</p>
 - 80% of US population within 60 min *transfer* of PCI center

STEN

STEMI Systems—Ideal Practices EMS Care Utilization of PH ECG

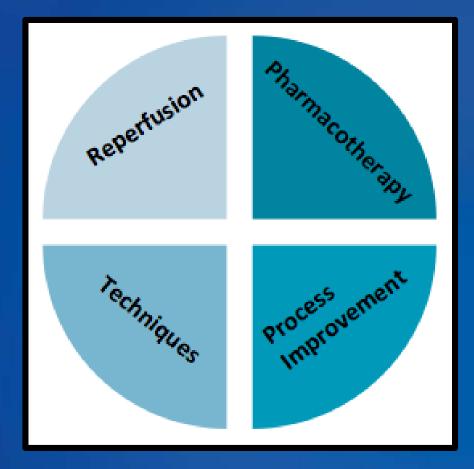
EMS Diversion to STEMI Center

Dieker HJ, et al. JACC CV Interv. 2010

STEMI Systems—Ideal Practices EMS Care

- 12 lead ECG
 - -Protocols for use
 - -Early, frequent, and rapid application
- Pre-hospital cath lab activation
- Transport & Diversion Protocols
- Initiation of standardized medical therapy
 - -Less = more
 - -No drips!
 - -"Grab and go"

STEMI Systems—Ideal Practices EMS Care Prehospital ECG Benefits


– Earlier recognition/diagnosis in the field

- Leads to earlier treatment (via lytics or PCI)
- Smarter triage in the field
 - Bypass non PCI hospital to SRC
 - Rendevous arrangement with air transport
- Improved outcomes:
 - Reduce short term mortality
 - Long term survival

STEMI Systems of Care Conclusions & Call to Action:

- 1. STEMI systems of care now a societal expectation
 - Concerted effort to optimize care for the most patients
- 2. Concept of Rx times must include *all entities* of the team
- 3. PCI centers must take the lead
 - Accountability (public reporting soon)
 - Leadership teams, funding, DATA! (Get in ACTION-GTWG)
- 4. Transfer patients
 - Prehospital triage with *diversion protocols*
 - Streamline care in non-PCI hospitals (Measure DIDO time)
 - Fibrinolytics if FMC2b > 120 min
- 5. EMS cooperation & collaboration
 - Leadership, metrics, data

Thank you for your attention!

Follow us: www.stemitexas.com

#stemitexas