THE ROLE OF HEMODYNAMIC SUPPORT IN EMERGENT PERCUTANEOUS REVASCULARIZATION

HM Thai, MD, FACC, FSCAI Associate Professor of Medicine Associate Director, Interventional Cardiology Fellowship University of Arizona

Cardiogenic Shock Incidence

- ~8% of STEMI in NRMI
- 2% of NSTEMI
- ~50,000 patients per year
- 11% 2014

Babaev et al: JAMA 294:448, 2005

Cardiogenic Shock Etiology Shock Trial and Registry

Hochman et al. JACC 2000; 36: 1063

Pathophysiology

"Unloading" ... Reducing <u>Work</u> (O₂ demand) of the Myocardium

"PV Loop" of the Cardiac Cycle

Volume

- A. End Diastole Mitral Valve Closure
 - B. Aortic Valve Opening
- C. End Systole Aortic Valve Closure
 - D. Mitral Valve Opening

- Work = Pressure x Volume
- Ventricular "Work" = Area of PV Loop; proportional to O₂ demand
- Unloading Work = Reducing Area of PV Loop

Measuring Performance in Circulatory Support

The area inside the resulting PV loop is equal to the work being done by the heart in a single cardiac cycle

Smaller area inside the PV loop means less work being done by the LV

The Evidence for Pressors in Shock

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MARCH 4, 2010

VOL. 362 NO. 9

Comparison of Dopamine and Norepinephrine in the Treatment of Shock

Daniel De Backer, M.D., Ph.D., Patrick Biston, M.D., Jacques Devriendt, M.D., Christian Madl, M.D., Didier Chochrad, M.D., Cesar Aldecoa, M.D., Alexandre Brasseur, M.D., Pierre Defrance, M.D., Philippe Gottignies, M.D., and Jean-Louis Vincent, M.D., Ph.D., for the SOAP II Investigators*

A subgroup analysis showed that dopamine, as compared with norepinephrine, was associated with an increased rate of death at 28 days among the 280 patients with cardiogenic shock but not among the 1044 patients with septic shock or the 263 with hypovolemic shock (P=0.03 for cardiogenic shock, P=0.19 for septic shock, and P=0.84 for hypovolemic shock, in Kaplan–Meier analyses).

Duke Clinical Research Institute

Cardiogenic Shock Prognosis

Babaer et al: JAMA 1294:448, 2005

Clinical Goals of Emergent Support

- Revascularization
- Restore Stable Hemodynamics
 - reversing decline of end-organ perfusion, reducing risk of end-organ failure, breaking cycle of cardiogenic shock
- Minimize Infarct Size
 - reducing myocardial ischemia, halting cell damage, maximizing residual cardiac function
- Ease-of-Use & Safety
 - consistent with critical treatment time scenarios and risk-benefit considerations of emergency care

SHOCK Trial Early intervention vs. Conservative medical management

30-day Mortality – 44.0% vs 53.3%

Cardiac Power The Most Important Predictor of Mortality in the SHOCK Trial

2011 ACCF/AHA/SCAI PCI Guidelines

- Class I: Section 5.2.3 Cardiogenic Shock: Recommendation: "A hemodynamic support device is recommended for patients with cardiogenic shock after STEMI who do not quickly stabilize with pharmacological therapy (384,424–427)." This classification includes the statement: "Refractory cardiogenic shock unresponsive to revascularization may necessitate institution of more intensive cardiac support with a ventricular assist device or other hemodynamic support devices to allow for myocardial recovery or subsequent cardiac transplantation in suitable patients."
- Class II b: Section 5.6 Percutaneous Hemodynamic Support Devices: Recommendation: "Elective insertion of an appropriate hemodynamic support device as an adjunct to PCI may be reasonable in carefully selected high-risk patients."

Mechanical Assist: Historical Perspectives

PRIMARY GOAL OF IABP THERAPY

- Increase blood flow to the coronary arteries by augmenting diastole
- Decrease left ventricular end diastolic pressure and systolic pressure to improve pumping efficiency and improve cardiac output

Intra Aortic Balloon Counterpulsation

- Hemodynamic stabilization:
 - \rightarrow cardiac index \uparrow and early diastolic pressure \uparrow
 - diastolic blood flow augmentation in the coronary and systemic circulation
 - systolic reduction in afterload and aortic impedance
- LV recovery / infarct size reduction
 - peak left ventricular wall stress ↓
 - myocardial oxygen consumption \downarrow

IABP in daily clinical practice

Table 1. Principal Indications for Intra-Aortic Balloon PumpUse in 5,495 Patients With AMI

Cardiogenic shock	27.3%
Support for high-risk catheterization and angioplasty	27.2%
Mechanical complications of AMI (VSD and PMR)	11.7%
Pre-operative support for high-risk cardiac surgery	11.2%
Refractory post-MI unstable angina	10.0%
Weaning from cardiopulmonary bypass	4.8%
Refractory left ventricular failure	4.5%
Refractory ventricular arrhythmias	1.3%
Intra-operative support during surgery	0.5%
Other or indication not recorded	1.5%

AMI = acute myocardial infarction; MI = myocardial infarction; PMR = papillary muscle rupture; VSD = ventricular septal defect.

IABP vs Control in HR-STEMI – 30-day mortality

Randomized controlled trials

IABP vs Control in HR-STEMI – LVEF

Randomized controlled trials

IABP vs Control in HR-STEMI – Stroke / Bleeding

Randomized controlled trials

IABP 2% increase in Stroke

IABP 6% increase in Bleeding

PRIMARY GOAL OF pVADS & ECLS

Primary Goal of pVADs

- Actively unload the left ventricle
- Removes blood from the left ventricle and places in the ascending aorta

Primary Goal of ECLS

- Removes blood from the left atrium and returns to the circulation
- Provides extracorporeal support to replace or support cardiac circulation
- Provides oxygenation and CO2 removal

Percutaneous Devices for Hemodynamic Support: Technical Features

		Impella	Impella
	TandemHeart	LP 5.0	2.5
Cannula size	21 Vein ,15-17 Arterial (12 Fr arterial x 2)	21 Fr	13 Fr
Flow (L/min)	4	5	2.5
Pump speed (rpm)	7500 (Centrifugal)	33,000 (axial)	33,000 (axial)
Insertion	FA + LA	FA cutdown	FA perc.
Anticoagulation	Yes	Yes	Yes
Cost (relative to IABP)	+++++	++++	+++

Modified from Thiele, *Eur Heart J* 28: 2057, 2007

Randomized Trial of Tandem Heart vs IABP n=41

Primary endpoint: cardiac power index = CI x mean arterial pressure x 0.0022

Thiele et al: EHJ 26:1276, 2005

Tandem Heart

Randomized Trials TandemHeart vs. IABP in STEMI + CS Meta-analysis

Venous sheath 21F Transseptal puncture - inflow left atrium. 15F or 17F arterial cannulae.

average insertion time > 30 45–60 min ACT > 200 seconds during support Not easy Time consuming Learning curve Limb ischemia Bleeding

Impella

Impella CP[™]– Impella[®] 2.5 Comparison

	Impella 2.5	Impella CP
Mean Flow Rate (L/min, max)	2.3 to 2.5	3.3. to 3.5 (at P9)
Catheter Size	9 Fr	9 Fr
Pump Size	12 Fr	14 Fr
Insertion Method	Percutaneous via 13 Fr Introducer Sheath	Percutaneous via 14 Fr Introducer Sheath
Guidewire	0.018" Silicone Wire	0.018" PTFE Wire
Placement Measurement	Fluid-filled Pressure Lumen	Fluid-filled Pressure Lumen
Cannula Geometry	Curved, Pigtail	Curved, Pigtail
RPM	51,000	46,000
P-level	P1-P9 (Boost Mode)	P1-P9

- 89 yo male with admitted with NSTEMI
 PMH:
 - MVR (bioprosthetic) No CABG
 - DM
- Treated conservatively with heparin/integrilin/ASA/plavix
- In the next 24 hours: Developed pulmonary edema and early shock
- Taken to the cath lab

89 yo male with multi-vessel CAD, NSTEMI LVEF 20% in early cardiogenic shock

89 yo male with multivessel CAD

LVEF 20%, turned down by CT surgery

What is the contemporary clinical evidence in emergent cases?

- Hemodynamic support in clinical trials
 - IABP vs Impella

Cardiogenic shock

SHOCK II

SHOCK II

R	esults	S	ubgr	oups	s (30-Da	y Morta	ality)	
	Baseline Variable	N	30-Day Mo IABP	rtality (%) Control	Relative Risk (95% Cl)	P-Value for Interaction		
	Female Male	187 411	44.4 37.3	43.2 40.5	1.03 (0.74-1.43) 0.92 (0.72-1.18)	0.61		
	Aqe <50 vears Age 50-75 years Age >75 years	70 334 194	19.4 34.6 53.7	44.1 36.5 40.0	0.44 (0.21-0.95) 0.95 (0.71-1.27) 1.07 (0.81-1.41)	0.09		
	Diabetes No diabetes	195 399	42.9 37.2	46.7 38.9	0.92 (0.67-1.26) 0.96 (0.74-1.23)	0.82	=	
	Hypertension No hypertension	410 183	42.9 28.9	40.4 43.0	1.06 (0.84-1.34) 0.67 (0.45-1.01)	0.05		
	STEMI/LBBB NSTEMI	412 177	41.0 37.5	42.9 38.3	0.96 (0.77-1.21) 0.98 (0.67-1.43)	0.76		
	Anterior STEMI Non-anterior STEMI	216 196	35.4 48.3	43.7 42.2	0.81 (0.58-1.13) 1.16 (0.85-1.57)	0.14		-
	Previous infarction No previous infarction	131 466	47.9 37.3	33.3 43.3	1.44 (0.93-2.21) 0.86 (0.69-1.07)	0.04		
	Hypothermia No hypothermia	226 372	48.1 35.1	44.2 39.3	1.09 (0.82-1.44) 0.89 (0.68-1.16)	0.31		
	Blood pressure <80 mmHg Blood pressure ≥80 mmHg	161 432	50.7 35.9	46.4 39.2	1.09 (0.79-1.50) 0.92 (0.72-1.17)	0.76		
						0 0.4 IABP be	5 1 1. etter C	5 2 2.5 ontrol better

SHOCK II

Results	Safety			
			_	
	IABP (n=300)	Control (n=298)	Р	
Stroke in-hospital n/total (%)	2/300 (0.7)	5/298 (1.7)	0.28	
GUSTO bleeding; n/total n (%))			
Life-threatening/severe Moderate	10/300 (3.3) 52/300 (17.3)	13/298 (4.4) 49/298 (16.4)	0.51 0.77	
Peripheral ischemic complicative requiring intervention; n/total	tion n (%) 13/300 (4.3)	10/298 (3.4)	0.53	
Sepsis; n/total n (%)	47/300 (15.7)	61/298 (20.5)	0.15	

IABP SHOCK II: 1 year Mortality

Thiele et al. Lancet 2013

The Current Use of Impella 2.5 in Acute Myocardial Infarction Complicated by Cardiogenic Shock: Results from the USpella Registry

William W. O'Neill, MD^{*}; Theodore Schreiber, MD[‡]; David H. W. Wohns, MD[±]; Charanjit Rihal, MD[¶]; Srihari S. Naidu, MD[#]; Andrew B. Civitello, MD[†]; Simon R. Dixon, MBChB^{**}; Joseph M. Massaro, PhD ^{||}; Brijeshwar Maini, MD^{††}; E. Magnus Ohman, MD[¶].

From the ^{*}Henry Ford Hospital, Detroit, MI, USA; [‡]Detroit Medical Center, Detroit, MI, USA; [±]Spectrum Health, Grand Rapids, MI, USA; [¶]Mayo Clinic, Rochester, MN, USA; [#]Winthrop University Hospital, Mineola, NY, USA; [†]Texas Heart Institute, Houston, TX, USA; ^{**}Beaumont Hospital, Royal Oak, MI, USA; [¶]Harvard Research Institute, Boston, MA, USA; ^{+†}Pinnacle Health Medical Center, Wormleysburg, PA, USA; [¶]Duke University Medical Center, Durham, NC, USA.

Study Flow Chart (06/08-05/12)

O'Neill et al, J Interven Cardiol 2013;9999:1-11

Impella[®] Insertion Timing (N= 154)

Hemodynamics

Hemodynamics

Impella Improves Cardiac Power Output, the Strongest Correlate of in-hospital Mortality

ARCONNECTAR A STATE OF THE CONTINUENT OF THE CONTINUENCE OF THE CONTINUENCE

TCT2010

Procedural Characteristics

Procedural Characteristics

Outcome

O'Neill et al, J Interven Cardiol 2013;9999:1-11

Survival to Discharge by Timing of PCI

Timing of Support Initiation (154)

O'Neill et al, J Interven Cardiol 2013;9999:1-11

Independent Predictors of In-Hospital Mortality Using a Multivariate Analysis*

Parameter Tested*	Odds-ratio	[CI 95%]	p-value
Initiation of Impella support prior to PCI	0.37	0.17 - 0.79	0.01
Age	1.05	1.02 - 1.08	0.003
Number of inotropes	1.56	11 - 2.18	0.01
Cardiogenic shock onset prior to admission	2.42	1.12 - 5.24	0.03
Mechanical ventilation	4.59	2.02 - 10.42	0.0003

* The multivariate analysis logistic model included the following as candidates for entry age, gender, history of chronic obstructive pulmonary disease, diabetes, peripheral vascular disease or prior stroke, STEMI vs. NSTEMI, cardiac arrest prior to admission, onset and duration of CS, patient transfer from outlying facility, evidence of anoxic brain injury pre-Impella support, need for mechanical ventilation, systolic and diastolic blood pressure, level of inotropic support pre-Impella support and potential use of IABP prior to Impella support, and baseline serum creatinine levels.

O'Neill et al, J Interven Cardiol 2013;9999:1-11

Outcome By Support Strategy

Survival to discharge

O'Neill et al, J Interven Cardiol 2013;9999:1-11

30 Day Survival

*: Kaplan Meier analysis estimated 30 day survival

Impella vs. IABP for STEMI+CS ISAR-SHOCK (n=26)

Hemodynamics

30 Day Mortality

Complications

DanShock Trial – Enrolling

2011 ACCF/AHA/SCAI PCI Guidelines

- Class I: Section 5.2.3 Cardiogenic Shock: Recommendation: "A hemodynamic support device is recommended for patients with cardiogenic shock after STEMI who do not quickly stabilize with pharmacological therapy (384,424–427)." This classification includes the statement: "Refractory cardiogenic shock unresponsive to revascularization may necessitate institution of more intensive cardiac support with a ventricular assist device or other hemodynamic support devices to allow for myocardial recovery or subsequent cardiac transplantation in suitable patients."
- Class II b: Section 5.6 Percutaneous Hemodynamic Support Devices: Recommendation: "Elective insertion of an appropriate hemodynamic support device as an adjunct to PCI may be reasonable in carefully selected high-risk patients."

Impella deployed in LV

ASC balloon LAD

LAD completely revascularized with Resolute DES

ASC balloon in Circ/OM

Circ/OM treated with Resolute post ASC balloon

Final results

- 75 yo male with DM, ESRD on dialysis, LVEF 25%, left main disease previously turned down by CT surgery
- Received left main PCI in 2010
- Readmitted with NSTEMI

75 yo male with LM disease and ISR of DES placed in 2010

DES ISR in LM and Circ ostium Balloon of L Circ ostium

Severe In-Stent Restenosis

Ruptured plaque inside ISR segment

Patient developed ventricular fibrillation

- Converted with 1 shock
- Became hypotensive and bradycardic
- Impella placed emergently

Patient went into cardiogenic shock

Stabilized after Impella placed

ASC balloon and DES in left main

ASC balloon 'grooves'

Angiosculpt Grooves

89 yo male with prior CABG and severe PVD

- Admitted with NSTEMI
- Single remaining SVG supplies lateral wall
- LIMA is down
- LAD supplied by collaterals from RCA
- LVEF 15%
- Hypotensive on 3 pressors

89 yo male with prior CABG and single remaining graft

SVG with severe disease LIMA occluded

Diffuse white (platelet rich) thrombus in distal SVG

Severe PVD

Impella 2.5 placed via long 14F sheath

- Main concern is that PCI attempt will shut down SVG, since no place to land filter device
- Not a lot of safety margin

Severe disease in SVG

No reflow in SVG

79 yo male with 6.5 cm AAA, referred for cath after admitted with NSTEMI

- Severe left main and multivessel disease
- LVEF 25%
- In cardiogenic shock on 2 pressors
- CT surgery deemed too high risk for CABG
 Referred for Impella supported PCI

79 yo male with LM disease, severe 6.5 cm AAA

DES post ASC Ballooning

ASC Ballooning of LAD

Sequential DES deployment

SKS Strategy

Impella from L subclavian access

• 77 yo male with left main, multivessel CAD

- LVEF 20%
- COPD, ESRD
- Presented with STEMI and CS

ASC Balloon of Circumflex

SKS ASC balloons

SKS Resolute

Residual left main lesion

ASC to protect Ramus while Resolute to Left Main

Be Persistent!